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1. Foreword 
 
This MURI grant has funded the development of a suite of next generation instruments designed 
to sensitively image and characterize large biomolecules. The approach taken by the team at Rice 
University and The University of Texas at Austin researchers is to exploit plasmon based surface 
enhanced spectroscopy to enhance the sensitivity of various optical spectroscopies for 
biomolecules.  
 
Gold nanoshells, spherical silica nanoparticles coated with a thin shell of gold form the basic 
substrate for the enhanced spectroscopy. The plasmon resonance of gold nanoshells is tunable 
across the visible and near infrared regimes by changing the ratio of the size of the core to the 
thickness of the shell. This tunability allows for optimization of the substrate for the selected 
spectroscopy. Based on the gold nanoshell structure various other nanoparticle substrates have 
been developed as part of the project and nanoshell based substrates have been optimized for 
combining different spectroscopic techniques on the same substrate. These nanostructures form a 
suite of optimized substrates with some of the best reported sensitivities for each of the 
spectroscopic methods studied. In addition to the high sensitivity, this MURI has established a 
number of firsts: The first near IR excited ROA spectrometer, and the first NIR ROA spectrum 
with mirror image enantiomer spectrum, and the first superlens structure in the infra red regime. 
 
Along with the extensive experimental investigations we have developed a comprehensive suite 
of theoretical techniques to understand the underlying science for each nanostructured substrate. 
These techniques have allowed us to model and often quantitatively simulate the experimental 
results. This synergy has been a major strength of the research conducted as it has allowed the 
theorists to model realistic systems and the experimentalists to gain insights into the system and 
rationally optimize the substrates. A large number of applications of the enhanced spectroscopic 
platforms have resulted from this and the development of new sensing modalities such as 
exploiting the Fano resonances in plasmonic nanostructures for LSPR sensing. 
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2. Statement of problem studied  
 
The specifically stated goals of this project were: 
 
In this MURI project we will design and fabricate optical probe instruments that utilize tunable 
plasmonic nanostructures as substrates to enhance the optical spectroscopies uniquely suited for 
the characterization of peptides, proteins and viruses. The focus of our efforts is on three 
spectroscopies where the plasmon response is known to enhance the molecular response: 

• Raman Spectroscopy and its circularly polarized light analog Raman Optical Activity; 
• Infrared Spectroscopy and its circularly polarized light analog Vibrational Circular 

Dichroism; and  
• Fluorescence Spectroscopy. 

Three instrument platforms that utilize these three spectroscopies will be designed fabricated and 
characterized: 

• Platform I: a multimodality sensing substrate where the spectroscopies can be 
optimized in the simplest and most straight forward optical geometries;  

• Platform II: a multimodality scanning local probe that optimizes all three 
spectroscopies within a composite probe tip, for ultrahigh spatial resolution and for 
simultaneously topographically and spectroscopically mapping cellular or viral 
surfaces;  

• Platform III: a superlens microscope, with integrated spectroscopies, where the 
superlens focusing provides both near field enhancement for spectroscopies and 
subwavelength imaging, as an integrated local probe of cellular or viral structure and 
composition. 

We can state that we have achieved success in developing all three platforms and 
demonstrating the surface enhanced spectroscopies in each platform.  
 
3. Summary of most important results: 
 
Design of Tunable Plasmonic Substrates: 
One of the major advances in this MURI has been in the area of substrate development for 
surface enhanced spectroscopies, establishing both a strong theoretical foundation, and a direct 
connection between theoretical design and actual experimentally developed substrates. 
 
A basic requirement for enhancing the spectroscopic signature of the various optical 
spectroscopies is a plasmonic substrate. At the start of the project the basic substrate was the 
silica core, gold nanoshells. As part of this MURI project we have developed an improved 
method for the growth of continuous Au shell layers on dielectric oxide nanoparticles. The 
reduction of Au3+ by CO(gas) results in the formation of thin, uniform shell layers on these 
nanoparticles at lower Au3+concentrations, where continuous shell layers are not achievable with 
current liquid phase reduction methods. This approach relies only on the introduction of CO(g) 
into the solution of prepared precursor nanoparticles and Au3+, and is not susceptible to 
variations in shell layer morphology influenced by preparation of reductant or precursor 
solutions, a limitation of current shell layer growth methods. The use of CO as a reductant also 
has the potential to transform the manufacturing of nanoshells from a batch to a continuous flow 
process.  
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The tunability of nanoshells is a powerful tool in optimizing substrates for enhancing various 
surface enhanced spectroscopies. We have synthesized and investigated the size dependant 
tunability of solid gold nanoparticles, and nanoshells by making sub 100 nm diameter nanoshells 
to mesoscopic sized nanoparticles (gold meatballs) and micron sized nanoshells. In addition to 
gold nanoshells, we have investigated the effects of dielectric properties of the core and shell 
material on the tunability and field enhancement of nanoshells.  We have developed silver, 
copper and nickel nanoshells, nanoshells with magnetic iron oxide cores and copper oxide cores 
to study these properties.  
 
In addition to the nanoshell substrates we have developed a number of nanoparticle substrates 
that allow for surface enhanced spectroscopy. Techniques to synthesize nanoshell/nanoparticle 
dimers, nanorice (core-shell nanoparticles with the tunability of nanoshells and the field 
enhancements of nanorods), nanoeggs (reduced symmetry core-shell particles with enhanced 
fields), nanocups, and nanostars (star shaped nanoparticles with intense fields at the tips) have 
been investigated. The plasmonic properties of these nanoparticles show excellent quantitative 
agreement with theoretical models developed to understand these properties and their origins. 
 
The junction between two plasmonic substrates shows intense enhanced fields. The plasmonic 
properties of the junction between nanoshell dimers, trimers, quadrumers etc. nanorods, a 
nanoparticle on film geometry, a concentric ring disk system have been studied. These 
investigations have lead to the development of an entirely new direction in plasmonics - coherent 
phenomenon previously only observed in atomic systems.  
  
The development of various nanostructures and the investigation of their optical properties have 
been in concert with theoretical modeling of these systems with excellent quantitative agreement 
in many systems. The theoretical Plasmon Hybridization (PH) model developed to gain intuitive 
understanding of coupled plasmonic systems has been expanded from spherical systems to a 
generalized curvilinear system and maybe applied to any particles of geometrical structures that 
can be described using separable curvilinear coordinates. The PH model is now a widely 
accepted theoretical model for understanding the hybridized plasmons in any coupled plasmonic 
system that maybe deconvolved into simpler plasmonic structures. 
 
A second theoretical development to investigate the optical properties of nanostructures 
fabricated is the Finite Difference Time Domain (FDTD) technique. The completely generalized, 
fully parallelized code including retardation effects has been developed and implemented at Rice 
University.  
 
Surface Enhanced Raman Spectroscopy (SERS) 
 
One of the major achievements of this MURI has been the development of the basic 
understanding of SERS, optimizing substrates for SERS, designing substrates that combine 
SERS and Surface Enhanced Infra Red Absorption (SEIRA) and the numerous applications 
developed using SERS. As Raman scattering and infra red absorption are complementary 
techniques combining the two provides a powerful tool for identification of analytes. 
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We have developed a reliable technique to assemble spherical gold nanoparticles and gold 
nanoshells into a well ordered array with sub 10 nm gaps between the nanoparticles. The 
nanoshell array substrates reported provide a new, multifunctional platform for chemical sensing 
applications by enhancing both Raman spectroscopy and infrared spectroscopy. Integrating 
SERS and SEIRA on a single substrate will enable the identification of unknown molecules by 
combining both surface-enhanced vibrational spectroscopies, allowing more detailed 
investigations of molecular structure, orientation, and conformation, as well as adsorbate–
substrate and adsorbate–adsorbate interactions. This substrate geometry also provides a system 
for detailed and highly reproducible correlations between surface-field properties and 
spectroscopic enhancements, which enhances our ability to unravel the complex mechanisms 
involved in surface enhanced spectroscopic processes. 
 
We have developed a standalone, all-optical nanoscale pH meter that monitors its local 
environment through the pH-dependent surface-enhanced Raman scattering (SERS) spectra of 
the adsorbate molecules. We show that an Au nanoshell with a pH-sensitive molecular adsorbate 
functions as a sensitive nano pH meter. By using a statistical learning theory analysis of the 
SERS spectra, a quantitative pH sensor has been developed. The average accuracy of the nano 
pH-meter was found to be ±0.10 pH units across its operating range.  This is possibly the first 
nanosensor. The analysis method demonstrated here may also be broadly applicable across a 
family of chemically functional, SERS-based nanodevices that, in principle, could be fabricated 
on an ever-increasing variety of plasmon-resonant nanoparticle substrates with large local field 
enhancements at their surfaces. 
 
Another success has been in developing methods to determine the reproducibility of SERS 
spectra of large biomolecules such as DNA and dipeptides.  For obtaining highly reproducible 
surface-enhanced Raman spectroscopy (SERS) of single and double-stranded thiolated DNA 
oligomers, a thermal uncoiling protocol relaxes the DNA into an extended conformation, before 
they are attached to nanoshells. SERS spectra of DNA oligonucleotides are found to be 
extremely similar, strongly dominated by the Stokes modes of adenine, regardless of the DNA 
composition, sequence, and hybridization state. A spectral correlation function analysis useful 
for assessing reproducibility and for quantifying the highly complex changes corresponding to 
modifications in molecular conformation of the adsorbate molecules is introduced. This approach 
has been used to monitor the change in conformation of aptamers with specific and non specific 
analyte molecules.  
 
SERS spectra obtained for three cysteine-containing aromatic peptides, phenylalanine-cysteine, 
tyrosine-cysteine, and tryptophan-cysteine, conjugated to Au nanoshell substrates show excellent 
reproducibility and close similarity to their respective solution-phase Raman spectra. The relative 
Raman and SERS cross-sections of the characteristic Stokes modes of the three aromatic amino 
acids were obtained. The Raman and SERS spectra of penetratin, a 19 amino acid cell-
penetrating peptide, can be reproduced very well, except in the backbone spectral region, by 
using the appropriate Raman and SERS spectra of these aromatic peptides as an empirical “basis 
set”. This study reveals that the spectral features of aromatic amino acid residues, when present, 
along with the protein backbone, are dominant in the Raman and SERS spectra of 
peptides/proteins, greatly simplifying spectral interpretation. 
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Many biomolecules of interest lack a facile moiety to attach to a gold surface. We have 
demonstrated a technique using a hybrid lipid bilayers to attach molecules close to the nanoshell 
surface to enhance the SERS and SEIRA spectra. Using ibuprofen as a molecule of interest, the 
spectroscopic results combined from SERS and SEIRA studies provide chemical insight into the 
nature of ibuprofen-lipid interactions and have clinical importance in understanding the effects of 
NSAIDs on the integrity and permeability of the gastric mucosal membrane. The plasmonic 
nanostructures utilized in these studies are applicable for spectroscopic investigation of other 
biologically relevant phenomena in membrane mimics. This technique also provides a general 
method to investigate the SERS/SEIRA spectra of small molecules that may not be conveniently 
attached to a nanoshell substrate.  
 
Another application of nanoshell based SERS has been in the area of studying catalysis. Pd 
islands grown on nanoshells have been used to investigate directly the reaction pathways and 
intermediates formed during the catalytic hydrodechlorination of 1,1-dichloroethene in H2O 
using surface-enhanced Raman spectroscopy (SERS). More broadly, the results highlight the 
exciting prospects of studying catalytic processes in water in situ. 
 
We have applied SERS techniques to map the profile of the enhanced near field of a nanoshell. 
This defines a characteristic length associated with a plasmonic nanostructure LSERS that is useful 
to define a sensing volume around the nanostructure. SERS techniques to determine the packing 
density of analyte molecules have been developed. These rely on a SERS active moiety attached 
to the analyte molecule of interest. 
 
Surface Enhanced Infra Red Absorption (SEIRA): 
 
We have developed nanoshell based substrates for SEIRA. Aggregates of nanoshells with “hot 
spots” in the junctions act as effective SEIRA substrates. By increasing the refractive index of 
the substrate (silicon instead of glass), the IR plasmons of the nanoshell aggregate can be further 
redshifted, increasing the mid-IR plasmon response and the overall spectral range for SEIRA 
enhancement. By detailed modeling and statistical analysis of the infrared ‘hot spots’ formed 
within nanoshell aggregates, we have shown that large SEIRA enhancement factors, of the order 
of 102-103, are achievable using these substrates.  
 
Combined SERS and SEIRA spectroscopic investigations and quantum mechanical calculations 
have been used to elucidate the binding of adenine, and adenosine monophosphate to gold 
surfaces.  
 
Metal Enhanced Fluorescence: 
 
Fluorescence of dye molecules in the vicinity of metal nanostructures is modified. We have 
examined the role of the nanoparticle plasmon resonance energy and nanoparticle scattering 
cross section on the fluorescence enhancement of adjacent indocyanine green (ICG) dye 
molecules. We find that enhancement of the molecular fluorescence by more than a factor of 50 
can be achieved for ICG next to a nanoparticle with a large scattering cross section and a 
plasmon resonance frequency corresponding to the emission frequency of the molecule. Both 
experimental observations and theoretical analysis involving nanoparticles of different plasmon 



6 
 

resonance energies and scattering properties show that fluorescence enhancement is optimized 
by increasing particle scattering efficiency while tuning the plasmon resonance to the emission 
wavelength of the fluorophore.  
 
We have investigated both nanoshells and nanorods as substrates for enhancing fluorescence of 
weak dyes. Silica epilayers of controlled thickness for spacing the dye molecules at controlled 
distances from the nanoparticle surfaces have been developed. Nanoshells prove to be more 
versatile substrates as the scattering cross section of nanoshells is larger. These nanoparticles 
have found use in enhancing contrast agents for imaging. 
 
Surface Enhanced Raman Optical Activity: 
 
We have designed and built the first near IR Raman Optical Activity spectrometer. For 
investigating the ROA spectra from peptides fluorescence in the visible regime is a competing 
phenomenon to the ROA. By designing and building the first near IR ROA spectrometer the 
potential fluorescence is reduced. We have presented the first examples of ROA spectra collected 
with NIR laser excitation. These are also the first ROA spectra recorded with laser excitation 
outside the blue-green spectral region between 488 and 532 nm. Comparisons of the Raman and 
ROA spectra of neat S-(-)- α -pinene and L-alanyl- L-alanine in H2O demonstrate that the major 
differences in normalized intensities for these two excitation regions can be attributed to the 
expected frequency-to-the-fourth power dependence for the Raman spectra and a frequency-to-
the-fifth power dependence for the ROA spectra. Further nanoshell and gold colloid based 
substrates have been developed and the first surface enhanced NIR ROA spectra have been 
demonstrated. 
 
We have developed models for the electromagnetic enhancements in surface enhanced Raman 
optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to 
substrates, such as metal nanoparticles in solution that are orientationally averaged with respect 
to the laboratory frame. Our theoretical treatment combines analytical expressions for 
unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the 
substrate’s electromagnetic enhancements. We evaluate enhancements from model substrates to 
determine preliminary scaling laws and selection rules for SEROA. The results of the model are 
illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-
bromochlorofluoromethane on various model substrates. 
 
Localised Surface Plasmon Resonance Sensing: 
 
We have developed a single particle spectrometer to investigate the optical properties of a single 
nanoparticle.  Single nanoparticle spectroscopy measurements on specific isolated nanoshells, and a 
comparision of this response to theory quantitatively was carried out.. The optical properties were 
correlated with the nanoscale structure of the particle as determined by scanning electron 
microscopy. This study constituted the first time that single nanoparticle structural measurements and 
optical measurements have ever been performed on the exact same particle. This led to better design 
of nanoshell substrates for LSPR sensing. Next we performed LSPR measurements on nanoshells of 
various sizes and resonances to investigate the range of LSPR tuning with dielectric media for 
nanoshells. 
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We have also investigated LSPR sensing with the various nanoparticle substrates developed: 
nanoshells, nanorods, nanorice, mesoscopic gold ‘meatballs’, gold bipyrimids etc. In addition 
nanoparticles such as the nanostar demonstrate some of the highest LSPR sensitivity but the shape of 
the stars varies from one sample to another. Plasmon Hybridization theory has been successfully 
applied to even irregularly shaped nanostar particles. 
 
Recently we have discovered the plasmonic equivalent of coherent phenomenon in nanoparticle 
clusters ranging from dimmers, trimers and higher aggregates. The Fano resonance supported by 
these structures shows some of the highest LSPR sentivity reported. These nanoclusters are still 
under investigation.  
 
Metamaterials: 
 
One of the platforms to be developed under this MURI was a superlens for both enhanced 
spectroscopy and imaging capability. Materials that show negative permittivity and permeability 
can be used to overcome the diffraction focusing limit of traditional lenses and form super 
lenses. We have investigated numerous structures and geometries both theoretically using Finite 
Element Methods (FEM, COMSOL) and experimentally for imaging and spectroscopy in the 
infra red regime. The most successful geometry consists of sandwich geometry of of SiC 
between SiO2 layers. 
 
We have demonstrated superlens based near field microscopy using a SiC superlens in the infra-
red region. This allows for sub wavelength scale resolved imaging of buried objects. In our 
experiments, a superlens consists of a thin (440 nm) SiC layer which show negative permittivity 
between 10.3 μm and 12.5 μm is sandwiched between 2 layers of SiO2 (220 nm thick) which 
serve as the object and image planes. Holes milled in a 60 nm gold layer deposited on the object 
plane are imaged in reflection mode using a scattering mode SNOM. This geometry exhibits 
sufficient optical contrast to observe λ/20 sized objects 880 nm away from the SNOM tip. 
 
We also introduce the concept of metafluids—liquid metamaterials based on clusters of metallic 
nanoparticles which we term Artificial Plasmonic Molecules (APMs). APMs comprising four 
nanoparticles in a tetrahedral arrangement have isotropic electric and magnetic responses and are 
analyzed using the plasmon hybridization (PH) method, an electrostatic eigenvalue equation, and 
vectorial finite element frequency domain (FEFD) electromagnetic simulations. With the aid of 
group theory, we identify the resonances that provide the strongest electric and magnetic 
response and study them as a function of separation between spherical nanoparticles. We 
demonstrate that a colloidal solution of plasmonic tetrahedral nanoclusters can act as an optical 
medium with very large, small, or even negative effective permittivity, εeff, and substantial 
effective magnetic susceptibility, χeff = μeff −1, in the visible or near infrared bands. We suggest 
paths for increasing the magnetic response, decreasing the damping, and developing a metafluid 
with simultaneously negative εeff and μeff. 
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